Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Simulation Driven Design of HVAC Systems under Competing HVAC Noise and Defrost Performance Requirements

2021-08-31
2021-01-1020
It is particularly easy to get tunnel vision as a domain expert, and focus only on the improvements one could provide in their area of expertise. To make matters worse, many Original Equipment Manufacturers (OEMs) are silo-ed by domain of expertise, unconsciously promoting this single mindedness in design. Unfortunately, the successful and profitable development of a vehicle is dependent on the delicate balance of performance across many domains, involving multiple physics and departments. Taking for instance the design of a Heating, Ventilation & Air Conditioning (HVAC) system, the device’s primary function is to control the climate system in vehicle cabins, and more importantly to make sure that critical areas on the windshield can be defrosted in cold weather conditions within regulation time. With the advent of electric and autonomous vehicles, further importance is now also placed on the energy efficiency of the HVAC, and its noise.
Technical Paper

Software tools and methods for the practice-oriented PDM integration of design and diagnostics of mechatronic systems in vehicles

2000-06-12
2000-05-0114
a practice-oriented approach for an accelerated product development and product design process for mechatronic systems is presented. The handling of complex and versatile product data to perform this process is shown in the area of electrical drives and actuators in cars. It is discussed, how the coordination of all the necessary disciplines as development, design, testing field, specification and release management should be software supported and PDM integrated. The advantages and benefits of the presented methods are shown on particular examples. The necessary software modules are introduced, showing that the realized solution gives both opportunities - the integration into a PDM backbone and at the same time an independent communication within department and/or company. The practical way, to realize the expert-specific needs of the development department, which is not possible with a general PDM system is pointed out.
Technical Paper

Structural Modelling of Car Panels Using Holographic Modal Analysis

1999-05-17
1999-01-1849
In order to optimise the vibro-acoustic behaviour of panel-like structures in a more systematic way, accurate structural models are needed. However, at the frequencies of relevance to the vibro-acoustic problem, the mode shapes are very complex, requiring a high spatial resolution in the measurement procedure. The large number of required transducers and their mass loading effects limit the applicability of accelerometer testing. In recent years, optical measuring methods have been proposed. Direct electronic (ESPI) imaging, using strobed continuous laser illumination, or more recently, pulsed laser illumination, have lately created the possibility to bring the holographic testing approach to the level of industrial applicability for modal analysis procedures. The present paper discusses the various critical elements of a holographic ESPI modal testing system.
Technical Paper

Synergetic 1D-3D-Coupling in Engine Development Part I: Verification of Concept

2015-04-14
2015-01-0341
This paper introduces an innovative approach, named synergetic 1D-3D-Coupling, by using synergy effects of 1D and 3D simulation in order to bring down modeling and simulation efforts. At the same time the methodology sustains the spatial resolution of a 3D model. This goal is reached by reducing the 3D fluid side with its time consuming continuity, momentum, energy and turbulence equations to a simple but precise 1D model. Because of the solid structure staying three dimensional, heat flux direction and spatial resolution have 3D accuracy but short calculation times due to the simple heat diffusion equation to be solved. The 1D model is represented by an automatically generated equation system which is capable of considering transient effects. The energy transfer between 1D fluid model and 3D structure model is realized through a neutral 1D-3D-coupling program and the application of the fluid element specific Nusselt correlations.
Journal Article

Tackling the Complexity of Timing-Relevant Deployment Decisions in Multicore-Based Embedded Automotive Software Systems

2013-04-08
2013-01-1224
Multicore-based ECUs are increasingly used in embedded automotive software systems to allow more demanding automotive applications at moderate cost and energy consumption. Using a high number of parallel processors together with a high number of executed software components results in a practically unmanageable number of deployment alternatives to choose from. However correct deployment is one important step for reaching timing goals and acceptable latency, both also a must to reach safety goals of safety-relevant automotive applications. In this paper we focus at reducing the complexity of deployment decisions during the phases of allocation and scheduling. We tackle this complexity of deployment decisions by a mixed constructive and analytic approach.
Technical Paper

Testing Automotive Systems Modeled by Finite State Machines

1994-03-01
940136
The use of micro controllers in automotive systems renders the coordination of about 150 actors (70 electric motors, 15 magnetic valves and 50 relays). The resulting complexity of those systems as well as the requested zero defects demands time consuming testing. This work describes a method of performing test-scenarios, starting from a zero defect running specification, modeled by finite state machines. The test-scenarios are intended to determine whether a given system meets all specification requirements. First, a kind of structured modelling reactive automotive systems is deduced. Next, some important test selection methods, developed for the case the specification is given in the form of a finite state machine, are considered. Finally, a procedure and method for performing minimized complete test-scenarios for automotive systems are presented.
Technical Paper

The BMW AVZ Wind Tunnel Center

2010-04-12
2010-01-0118
The new BMW Aerodynamisches Versuchszentrum (AVZ) wind tunnel center includes a full-scale wind tunnel, "The BMW Windkanal" and an aerodynamic laboratory "The BMW AEROLAB." The AVZ facility incorporates numerous new technology features that provide design engineers with new tools for aerodynamic optimization of vehicles. The AVZ features a single-belt rolling road in the AEROLAB and a five-belt rolling road in the Windkanal for underbody aerodynamic simulation. Each of these rolling road types has distinct advantages, and BMW will leverage the advantages of each system. The AEROLAB features two overhead traverses that can be configured to study vehicle drafting, and both static and dynamic passing maneuvers. To accurately simulate "on-road" aerodynamic forces, a novel collector/flow stabilizer was developed that produces a very flat axial static pressure distribution. The flat static pressure distribution represents a significant improvement relative to other open jet wind tunnels.
Technical Paper

The Integrated Brake and Stability Control System of the New BMW 850i

1990-02-01
900209
The first part of the paper describes the brake system of the BMW 850i including brake actuation, brake split and ABS. ABS control philosophy and components are presented as well as performance date are shown. The BMW 850i will be available with two Automatic Stability Control systems ASC und ASC+T which are explained more in detail. Special attention is payed to the electronic and hydraulic interfacing of the different sub-systems required for ABS and ASC.
Journal Article

Timing Evaluation in E/E Architecture Design at BMW

2014-04-01
2014-01-0317
Timing evaluation methods help to design a robust and extendible E/E architecture (electric/electronic). BMW has introduced the systematic application of such methods in the E/E design process within the last three years. Meanwhile, most of the architectural changes are now verified by a tool-based, automatic real-time analysis. This has increased the accuracy of the network planning and productivity of the BMW network department. In this paper, we give an overview of the actual status of timing evaluations in BMW's E/E architecture design. We discuss acceptance criteria, analysis metrics, and design rules, as far as these are related to timing. We look specifically at automation options, as these improve the productivity further. We will see that timing analysis has matured and should be mandatory for application in mass production E/E architecture development. At the same time, there is room for future improvements.
Technical Paper

Title: Development of Reusable Body and Comfort Software Functions

2013-04-08
2013-01-1403
The potential to reduce the cost of embedded software by standardizing the application behavior for Automotive Body and Comfort domain functions is explored in this paper. AUTOSAR, with its layered architecture and a standard definition of the interfaces for Body and Comfort application functions, has simplified the exchangeability of software components. A further step is to standardize the application behavior, by developing standard specifications for common Body and Comfort functions. The corresponding software components can be freely exchanged between different OEM/Tier-1 users, even if developed independently by multiple suppliers. In practice, individual OEM users may need to maintain some distinction in the functionality. A method of categorizing the specifications as ‘common’ and ‘unique’, and to configure them for individual applications is proposed. This allows feature variability by means of relatively simple adapter functions.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

byteflight~A new protocol for safety-critical applications

2000-06-12
2000-05-0220
The permanently increasing number of convenience and safety functions leads to higher complexity of in-car electronics and the rapidly growing amount of sensors, actuators and electronic control units places higher demands on high- speed data communication protocols. Safety-critical systems need deterministic protocols with fault-tolerant behavior. The need for on-board diagnosis calls for flexible use of bandwidth and an ever-increasing number of functions necessitates a flexible means of extending the system. None of the communication solutions available on the market until now (like CAN or TTP) have been able to fulfill all these demands. To solve these problems, BMW together with several semiconductor companies has developed a new protocol for safety-critical applications in automotive vehicles.
X